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Abstract
We report a study on several structural and dynamical properties of the liquid
Li–Mg and Li–Ba alloys. The study has been carried out by means of the
orbital free ab initio molecular dynamics method, combined with local ionic
pseudopotentials constructed within the same framework. The results show
good agreement with the available experimental data, accounting fairly well
for the different ordering tendencies exhibited by these alloys. We analyse
the dependence of the longitudinal and transverse collective modes on the
concentration and the mass ratio of the alloy, with the latter ranging from
mMg/mLi ≈ 3 to mBa/mLi ≈ 20.

1. Introduction

Ab initio molecular dynamics (AIMD) methods have become a usual technique in the study of
the thermodynamic, structural and dynamical properties of liquid systems. Most applications
of the AIMD methods are based on the density functional theory (DFT) [1, 2] which, for given
nuclear positions, yields the ground state electronic energy of a collection of atoms as well as
the forces on the nuclei. However, the AIMD methods that use the Kohn–Sham (KS) orbital
representation of DFT (KS-AIMD methods) impose high computational demands, limiting
the sample sizes and the simulation times; in fact, previous studies of bulk liquid metals and
alloys [3–5] have used around one hundred atoms and simulation times between 2 and 5 ps.
These limitations are partly overcome by the so-called orbital free ab initio molecular dynamics
(OF-AIMD) method, which by resorting to the Hohenberg–Kohn (HK) representation of the
DFT, eliminates the electronic orbitals of the KS formulation and provides a simulation method
which allows simulations of much larger samples and for long times.

The study of the thermodynamic and structural properties of liquid metallic binary alloys
has already produced much experimental and theoretical work which, however, is much
more scarce when it comes to the dynamic properties. Nonetheless, the last twenty years
have witnessed an increasing effort which was stimulated by a MD study of liquid Na–
K [6], followed by a MD simulation of liquid Li4Pb [7] where a new, high frequency mode,
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supported by the Li atoms only (the so-called ‘fast sound’) was found. Subsequently, several
theoretical calculations [8–13], computer simulations [14–16] and experiments [15, 17–19]
have investigated the existence and properties of the collective excitations in liquid binary
systems. On the theoretical side the application of the kinetic theory for a model binary
mixture of hard spheres, the revised Enskog theory (RET) [8, 9], and the recent generalized
collective model (GCM) approach [10] have given useful insights into the nature of the
collective excitations. For binary systems with disparate masses, two main branches (low and
high frequency ones) of collective excitations have been found to contribute to the longitudinal
dynamics, although its origin is still unclear. On the other hand, the transverse dynamics has
been much less investigated, mainly because it is not visible in scattering experiments and
only the MD simulations can provide information about the transverse excitations. The recent
application of the GCM approach, which combines MD simulations with the memory function
formalism, to binary Lennard-Jones fluids and liquid alloys [10] has shown the existence of
transverse optic modes, which arise in connection with concentration fluctuations.

This paper reports an AIMD study on the structural and dynamical properties of two Li-
based liquid alloys, namely, Li1−x Mgx and Li1−x Bax . They have usually been considered as
simple liquid alloys where the nearly free-electron theory should provide a reliable qualitative
description of several structural and thermodynamic properties. On the experimental side,
these alloys have been investigated by means of neutron scattering (NS) experiments by
Ruppersberg and co-workers [20, 21]. Those experiments were performed within the context
of a wider research programme aimed at analysing the total static structure factor, ST(q), of
simple liquid binary alloys as the size mismatch between both components is increased. Within
this program, NS experiments were performed on liquid binary alloys of Li with Mg, Ca, Sr
and Ba, for which the ratios of the molar volumes of the pure components at their melting
temperature are 1.16, 2.19, 2.61 and 3.06 respectively. The use of the 7Li isotope, which
has a negative neutron scattering length, meant that for a specific concentration of each alloy
(the so-called ‘zero-alloy’ concentration), ST(q) reduces to the concentration–concentration
partial structure factor, ST(q) = SCC (q)/xLi(1 − xLi), where xLi is the Li concentration. This
is very important as SCC (q) embodies most information concerning the ordering properties
of the binary alloy which therefore can be obtained, at the ‘zero-alloy’ composition, from a
single-neutron-scattering experiment.

The paper is organized as follows. In section 2 we briefly describe the theory used in
the OF-AIMD simulations, and provide some details concerning the electronic kinetic energy
functional and the local pseudopotential characterizing the electron–ion interaction. Sections 3
and 4 report the ab initio simulation results for the static and dynamic properties of the Li–Mg
and Li–Ba liquid alloys at several concentrations. Finally, we sum up and discuss the results.

2. Theory

A simple liquid metallic alloy, Ax B1−x , can be regarded as an assembly of NA, A-type,
and NB, B-type, bare ions with charges Z A

v and Z B
v respectively, interacting with Ne =

NA Z A
v + NB Z B

v valence electrons through electron–ion potentials vA(r) and vB(r). Therefore,
the total potential energy of the system can be written, within the Born–Oppenheimer
approximation, as the sum of the direct ion–ion Coulombic interaction energy, and the
ground state energy of the electronic system in the external potential created by the ions,
Vext(�r , { �Rl}) = ∑

i=A,B

∑
l(i) vi (|�r − �Rl |),

E({ �Rl}) = 1

2

∑
i, j=A,B

∑
l(i) �=m( j)

Zi Z j

| �Rl − �Rm | + Eg[ρg(�r), Vext(�r, { �Rl})], (1)
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Table 1. Input data for the Li–Mg alloys studied in this work, along with some simulation details.
ρ is the total ionic number density taken from [20, 34].

x = xMg ρ (Å−3) T (K) N Cutoff (Ryd)

0.30 0.040 71 887 800 18.25
0.50 0.040 41 887 800 18.15
0.70 0.040 11 887 800 18.00

where �Rl are the ionic positions, the sum over l(i) extends over the sites occupied by the i -type
ions and ρg(�r) is the ground state electronic density which, according to DFT, is obtained by
minimizing the energy functional

E[ρ(�r)] = Ts[ρ] + Eext[ρ] + EH[ρ] + Exc[ρ], (2)

where the terms represent, respectively, the electronic kinetic energy, Ts[ρ], of a non-interacting
system with density ρ(�r), the energy of interaction with the external potential due to the ions,
Eext[ρ], the classical electrostatic energy (Hartree term), EH[ρ], and the exchange–correlation
energy, Exc[ρ], for which we will adopt the local density approximation.

Within the KS-AIMD approach [2–4], Ts[ρ] is calculated exactly by using single-particle
orbitals, which requires a huge computational effort. This is alleviated in the OF-AIMD
approach [1, 22] by use of an explicit but approximate density functional for Ts[ρ]. Proposed
functionals consist of the von Weizsäcker term, TW[ρ(�r)] = 1

8

∫
d�r |∇ρ(�r)|2/ρ(�r), plus other

terms chosen to reproduce correctly some exactly known limits.
Here, we have used an averaged density model [23], where Ts = TW + Tβ ,

Tβ = 3
10

∫
d�r ρ(�r)5/3−2β k̃(�r)2 (3)

k̃(�r) = (2k0
F)

3
∫

d�s k(�s)wβ(2k0
F|�r − �s|) (4)

where k(�r) = (3π2)1/3ρ(�r)β , k0
F is the Fermi wavevector corresponding to a mean electron

density ρ0 andwβ(x) is a weight function determined by requiring the correct recovery of both
the linear response theory and Thomas–Fermi limits. For reasons stated elsewhere, we have
used a value of β = 0.51.

The other key ingredient is the local ionic pseudopotential, vαps(�r), describing the ion–
electron interaction. Its construction is fully described in [24] and we just mention that it has
been constructed from first principles by fitting to a model of an ion immersed in a metallic
medium.

In our simulations we consider N ions in a cubic cell with periodic boundary conditions.
Given the ionic positions at time t , the electronic energy functional is minimized with respect
to ρ(�r) represented by a single effective orbital,ψ(�r ), defined as ρ(�r) = ψ(�r )2. The orbital is
expanded in plane waves truncated at a cutoff energy, ECut (tables 1 and 5 specify both N and
ECut for the systems and concentrations considered). The energy minimization with respect
to the Fourier coefficients of the expansion is performed every time step using a quenching
method which results in the ground state electronic density and energy. The forces on the
ions are obtained from the electronic ground state via the Hellmann–Feynman theorem, and
the ionic positions and velocities are updated by solving Newton’s equations, with the Verlet
leapfrog algorithm with a time step of 2.5 × 10−3 ps. In the simulations for the LixMg1−x
alloys, the equilibration lasted 5 ps and the calculation of properties was made averaging over
50 ps, whereas for the Lix Ba1−x alloys the averaging was done over 90 ps.
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3. Results: the Li–Mg system

The Li–Mg phase diagram shows that Li and Mg are completely miscible in the liquid
state and even show some mild tendency towards heterocoordination. Ruppersberg et al
[20] performed a neutron diffraction study of the total static structure factor, ST(q), for the
‘zero-alloy’ composition, namely Li0.7Mg0.3, at two temperatures T = 695 and 875 K. Their
experimental results for both temperatures showed a rather structureless ST(q), suggesting
some weak heterocoordination tendencies.

Until now, few theoretical works have studied the Li1−x Mgx alloy system, and most of them
have focused on the solid phase. Among those we mention [25] which calculates, for several
concentrations, the elastic constants and the heat of mixing for the body centred cubic solid
phase, using interatomic pair potentials derived from the Dagens et al [26] pseudopotentials.
Hafner and co-workers [27, 28] have studied both the solid and liquid phases by using effective
interatomic pair potentials derived from first-principles optimized pseudopotentials (OPW) of
Harrison [29]. Although their results for the solid phase provided reasonable estimates of
the enthalpies, volumes of formation, structure and stability range of the alloy phases, they
failed to reproduce the experimental heterocoordination tendencies in the liquid phase. Within
the framework of interatomic pair potentials derived from the neutral pseudoatom model,
Canales et al have also studied the liquid alloy by means of both classical molecular dynamics
(CMD) and liquid state theories [30] and obtained static structural results which satisfactorily
accounted for the experimental ordering tendencies in the alloy. The same potentials were
later used within CMD to study the dynamic properties of this alloy [31, 32], and interpreted
recently in terms of the viscoelastic model for mixtures [33].

This work uses the OF-AIMD method to study the static and dynamic properties of the
liquid Li1−x Mgx alloy at T = 887 K and concentrations xMg = 0.3, 0.5 and 0.7. The
experimental total ionic number densities were taken from [20, 34] and table 1 lists the specific
thermodynamic states considered in this study.

First, we mention that OF-AIMD calculations on pure liquid Li and Mg at thermodynamic
conditions near their respective triple points [35] yielded an accurate description for several
static and dynamic properties. Figure 1 shows a comparison of the OF-AIMD static
structure factors obtained with their experimental [36] counterparts; aside from overestimating
somewhat the height of the main peak in Mg, we obtain a satisfactory agreement for the
amplitude and phase of the oscillations as well as for their low q behaviour. As for the
dynamical magnitudes, these are reported in the following subsections although we anticipate
that the OF-AIMD results obtained will show a reasonable agreement with the experimental
data. In this respect, the good results for the pure metals provide further confidence in the
utility of the OF-AIMD method and the local ionic pseudopotentials when applied to the study
of their binary alloys.

3.1. Structural properties

The simulations allow a direct evaluation of the partial pair distribution functions, gi j(r) as
well as the corresponding partial Ashcroft–Langreth (AL) structure factors Si j(q), from which
the total neutron weighted static structure factor, ST(q), is obtained as

ST(q) = b2
1x1S11(q) + b2

2x2S22(q) + 2b1b2(x1x2)
1/2S12(q)

x1b2
1 + x2b2

2

(5)

where x j and b j ( j = 1, 2) denote the concentration and neutron scattering length of the
j -type component. To analyse possible ordering tendencies in a liquid binary alloy, the
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Figure 1. Static structure factors of liquid Li, Ba and Mg at their respective triple points. Dotted
curves are the OF-AIMD results whereas the symbols are the experimental x-ray data of Waseda
et al [36]. The S(q) for Ba and Mg are displaced by one and two units respectively.

Bhatia–Thornton (BT) concentration–concentration, SCC (q), number–number, SN N (q), and
number–concentration, SNC (q), partial structure factors [37] are ideally suited:

SCC (q) = x1x2[x2S11(q) + x1S22(q)− 2(x1x2)
1/2 S12(q)]

SN N (q) = x1S11(q) + x2S22(q) + 2(x1x2)
1/2 S12(q)

SNC (q) = S11(q)− S22(q) + (x2 − x1)/(x1x2)
1/2 S12(q).

(6)

Moreover, in the case of the so-called ‘zero-alloy’ composition, i.e. when x1b1 +x2b2 = 0, then
SCC (q) = x1x2ST(q) and, therefore, it can be directly probed by a single-neutron-scattering
experiment. Figure 2 shows the OF-AIMD results for ST(q) and SCC (q) along with the
available experimental data for the ‘zero-alloy’ composition Li0.7Mg0.3. We observe that at
this composition, the ST(q) obtained accounts well for the main experimental features, with
a value at q → 0 which points to the existence of weak heterocoordination tendencies in the
alloy. No experimental data are available for either xMg = 0.50 and 0.70, but the present
OF-AIMD results for their SCC (q) suggest a nearly ideal behaviour.

A simple way of analysing the short range order in the alloy is by means of the Warren–
Cowley [38] short range order (SRO) parameter for the first-neighbour shell, α(i)1 , defined
as

α
(i)
1 = 1 − ni j

x j(nii + ni j)
( j �= i = 1, 2), (7)

where x j is the concentration of the j -type particles and ni j is the number of j -type particles
around an i -type particle, within a spherical volume of radius Ri j . The ni j can be calculated
from the partial pair distribution functions, gi j(r), as follows:

ni j = 4πρx j

∫ Ri j

0
r2gi j(r) dr, (8)

where Ri j is usually identified [39] with the position of the first minimum of the corresponding
gi j(r). However, in those cases with a large size mismatch between the two components, it
has been suggested that one take all Ri j as the position of the first minimum in the gii(r) of the
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Figure 2. Concentration–concentration, SCC (q), and total static structure factors, ST(q), for the
liquid Li–Mg alloy at T = 887 K and three concentrations. Continuous curves and open circles
are the OF-AIMD results for ST(q) and SCC (q) respectively, whereas the broken line stands for
the experimental neutron diffraction data of Ruppersberg et al [20] for xMg = 0.30.

Table 2. Calculated values of the coordination numbers, ni j , and the Warren–Cowley SRO

parameters, α(i)1 , for the Li–Mg liquid alloy at T = 887 K.

xMg nLiLi nLiMg nMgLi nMgMg α
(Li)
1 α

(Mg)
1

0.30 8.9 4.5 10.4 5.2 −0.12 0.05
0.50 6.2 7.5 7.5 8.6 −0.09 0.06
0.70 3.5 9.5 4.1 11.0 −0.04 0.10

larger component. For a random distribution of atoms α(i)1 = 0, whereas a positive (negative)
value for α(i)1 suggests a homocoordination (heterocoordination) tendency. We have evaluated
both α(Li)

1 and α(Mg)
1 for the liquid Li1−x Mgx alloy at T = 887 K and the results are shown in

table 2. We obtain rather small values with opposite signs for α(Li)
1 and α(Mg)

1 which suggest
a nearly ideal behaviour for all concentrations. This is corroborated by resorting to the local
mole fractions method [40], which has also been used to analyse the ordering tendencies in
mixtures. For a binary system, the local mole fractions, xii , are defined as

xii = nii

nii + ni j
j �= i = 1, 2. (9)

For a homogeneous phase, when the two species are nearly equally distributed, xs − 1 =
x11 + x22 − 1 is around zero; whereas for a demixed state, particles of the same species
dominate the distribution and xs − 1 grows [40]. Our calculated values of xs − 1 are close to
zero (≈10−3) for the three concentrations.
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3.2. Dynamic properties

3.2.1. Single-particle dynamics. We have evaluated the relative velocity correlation functions
(VCFs), Zi j(t), defined [41] as the time correlation function of the relative velocity of the centre
of mass of species i with respect to the centre of mass of species j :

Zi j(t) = 1
3 xi x j N〈[�ui (t)− �u j(t)] · [�ui (0)− �u j (0)]〉, (10)

where N is the total number of particles, �ui(t) = N−1
i

∑Ni
l(i)=1 �ul(i)(t), Ni is the number of

i -type particles and �ul(i)(t) is the velocity of the i -type particle l(i). The Zi j(t) is decomposed
into self-contributions, Z 0

i j(t), and distinct contributions, Z d
i j(t):

Zi j(t) = (1 − δi j)Z
0
i j(t) + xi x j Z d

i j(t), (11)

where δi j is Kronecker’s delta, Z 0
i j(t) = x j Z s

i (t) + xi Z s
j(t) and Z s

i (t) is the velocity
autocorrelation function of a tagged i -type particle in the fluid. The time integrals of Zi j(t),
Z 0

i j(t), Z d
i j(t) and Z s

i (t) give the associated diffusion coefficients (DC), namely Di j , D0
i j ,

Dd
i j and Ds

i respectively, where Ds
i is the usual self-diffusion coefficient. From the previous

expressions, we may write (we consider binary mixtures)

D12 = D0
12 + x1x2 Dd

12 ≡ D0
12(1 + γ12), (12)

with D0
12 = x2 Ds

1 + x1 Ds
2 and γ12 measures the deviation from an ideal mixture (i.e. when all

species are identical, γ12 = 0). The interdiffusion coefficient is given as

Dint = θD12 ≡ θ(1 + γ12)D
0
12, (13)

where θ = x1x2/SCC (q → 0). For a nearly ideal mixture, θ ≈ 1, γ12 ≈ 0 and therefore
Dint ≈ D0

12.
The results for the self-VCF and relative VCF for the Li1−x Mgx liquid alloy are shown

in figure 3. The self-VCF of the heavier particles, Z s
Mg(t), has the slower decay and smaller

backscattering as a result of the velocity persistence of the heavy particles when they collide
with the lighter ones. When the concentration of the heavy particles is increased, the
backscattering effect is enhanced because of there being more collisions of both heavy and
lighter particles with the heavy ones; therefore both self-diffusion coefficients are decreased.
In fact, table 2 shows that although the total number of nearest neighbours of a Li (or Mg) ion
changes slightly with concentration, the number of the heavier Mg ions increases noticeably.

As for ZLiMg(t), it stands between the two self-VCFs, which suggests a negligible effect
of the distinct correlations (with particles of either the same or different species). Quantitative
information on the weight of the distinct effects on DLiMg is provided by γLiMg, with positive
(negative) values of γLiMg indicating [41, 42] that particles of the same (different) species have
a greater tendency to diffuse together that those of distinct (the same) species. The results
obtained are close to zero, for all concentrations, which indicates a nearly ideal behaviour.

No experimental data are available for the diffusion coefficients for the liquid Li1−x Mgx
alloy. However, in order to provide some confidence in the previous results, we note that OF-
AIMD calculations for both pure Li and Mg at thermodynamic conditions near their respective
triple points gave D0

Li = 0.63 and D0
Mg = 0.52 whereas the experimental values are (in units

of 10−4 cm2 s−1) Dexp
Li = 0.64 ± 0.02 [43] and Dexp

Mg = 0.56 ± 0.02 [44]. In table 3 we also
include the results for SCC (q → 0) · Dint , which are very similar to those predicted by Darken’s
semiempirical expression [45], i.e. SCC (q → 0) · Dint = x1x2 D0

12; this is another indicator of
the petty role played by the distinct interparticle velocity correlations which are neglected in
Darken’s relation.
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Figure 3. Normalized self-VACFs and relative VACFs for the liquid Li–Mg alloy at T = 887 K
at two concentrations. The dotted, full and dashed curves represent ZLiMg(t), Z s

Li(t) and Z s
Mg(t)

respectively.

Table 3. Diffusion coefficients (in 10−4 cm2 s−1), for the Li–Mg liquid alloy at T = 887 K.

xMg 0.30 0.50 0.70

Ds
Li 1.63 1.17 0.73

Ds
Mg 1.17 0.87 0.55

DLiMg 1.20 0.96 0.70
D0

LiMg 1.30 1.02 0.68

Dd
LiMg −0.48 −0.24 0.09

γLiMg −0.08 −0.06 0.03
SCC (0)Dint 0.26 0.22 0.16

SCC (0)D
(Darken)
int 0.28 0.27 0.16

3.2.2. Collective dynamics. The density fluctuations in the alloy are usually described
through the partial AL intermediate scattering functions, Fi j (�q, t) = 〈ρi (�q, t) · ρ∗

j (�q, 0)〉,
where

ρi (�q, t) = 1√
Ni

Ni∑
l(i)=1

exp[i�q · �Rl(i)(t)], (14)

is the Fourier transform (FT) of the i-type component partial number density, Ni is the number
of i-type particles, �Rl(i)(t) is the position of the i-type particle l and 〈· · ·〉 stands for the
ensemble average. The time Fourier transformation of the Fi j (�q, t) into the frequency domain
gives the partial dynamic structure factors Si j (�q, ω) which are directly connected with the
inelastic neutron scattering data.
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Figure 4. Partial intermediate scattering functions, Fij (q, t), at q = 0.33 and 1.34 Å−1, for the
liquid Li0.7Mg0.3 alloy at T = 887 K. The full, dashed, dot–dashed, open circles and dotted lines
represent the FLiLi (q, t), FMgMg(q, t), FLiMg(q, t), 10×FN N (q, t) and 10×FCC (q, t) respectively.

Another dynamical magnitude is the i-type component particle current

�ji(�q, t) = 1√
Ni

Ni∑
l=1

�ul(i)(t) exp[i�q · �Rl(i)(t)], (15)

which is usually split into a longitudinal component, j L
i (�q, t), parallel to �q, and a transverse

component, j T
i (�q, t), perpendicular to �q. Therefrom, the partial longitudinal, CL

i j(�q, t), and
transverse, CT

i j(�q, t), current correlation functions are defined:

CL
i j (�q, t) = 〈 j L

i (�q, t) · j L∗
j (�q, 0)〉

CT
i j (�q, t) = (1/2)〈 j T

i (�q, t) · j T∗
j (�q, 0)〉 (16)

and their time FTs give the respective spectra, CL
i j(�q, ω) and CT

i j(�q, ω). We consider isotropic
systems, and all the previous correlation functions depend on q =| �q | only.

At low q values, the partial AL intermediate scattering functions, FLiLi(q, t), FMgMg(q, t)
and FLiMg(q, t) are dominated by the diffusive contributions which impose a very low decay;
this is shown in figure 4 for xMg = 0.30 but the same applies for the other concentrations. Those
contributions mask the oscillations associated with the propagating density fluctuations, which
however are exposed in the FN N (q, t). These results validate those obtained with effective pair
potentials within CMD and the viscoelastic model [31, 33] which showed a similar behaviour.
The density fluctuations appear as side peaks in the corresponding partial dynamic structure
factors, Si j(q, ω), which are shown in figure 5 for q ≈ 0.33 Å−1. At the three concentrations,
SLiLi(q, ω), SMgMg(q, ω) and SN N (q, ω) exhibit clear side peaks (or shoulders in the case of the
MgMg partial for xMg = 0.30), which at small q values are located at very similar frequencies;
this is the usual behaviour in the hydrodynamic regime, and represents a propagating sound
mode. SN N (q, ω) reflects the average behaviour of the system and for q � qh (where qh

denotes the upper limit of the hydrodynamic region), it exhibits a clear Rayleigh–Brillouin
structure [46]. From the position, ωB, of its Brillouin peak at the smallest q value reached
by the simulations, namely q ≡ qmin ≈ 0.23 Å−1, we can estimate the adiabatic velocity of
propagation, cs = ωB/q , of the sound modes in the alloy, i.e. cs = 2400 m s−1 (for xMg = 0.30),
cs = 4000 m s−1 (xMg = 0.50) and cs = 4550 m s−1 (xMg = 0.70). We are not aware of any
measurement of cs for this alloy; however, we mention that OF-AIMD calculations for both
pure Li and Mg near their triple point gave cs = 5000±150 m s−1 and cs = 4200±150 m s−1

respectively, whereas the experimental values [44, 47] are ≈4550 and 4100 m s−1.
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Figure 5. Partial dynamic structure factors, Si j (q, ω), at q = 0.33 Å−1, for the liquid Li–Mg
alloy at T = 887 K and three concentrations. The full, dashed and circles curves represent the
SLiLi(q, ω), SMgMg(q, ω) and 50 × SN N (q, ω) respectively. The inset shows 103 Si j (q, ω).

In the case of the CMD simulations of the system with effective pair potentials [31, 33], the
dominance of the diffusive component in the partial AL dynamic structure factors was extreme,
and completely covered the propagating contribution, leading to peakless Si j(q, ω) for small
wavevectors. In these OF-AIMD simulations small side peaks are indeed obtained, whose
range of existence depends on the concentration. For Li0.3Mg0.7, SLiLi(q, ω) and SN N (q, ω)
have peaks up to q ≈ 1.20 Å−1 whereas those of SMgMg(q, ω) last until q ≈ 0.85 Å−1. On the
other hand, for the Li0.7Mg0.3 alloy, SMgMg(q, ω) shows a side peak only at qmin, SN N (q, ω)
exhibits side peaks up to q ≈ 0.5 Å−1, whereas in SLiLi(q, ω) they appear up to q ≈ 1.4 Å−1.
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Figure 6. The dispersion relation of the collective modes in the partials, SLiLi(q, ω), SMgMg(q, ω)
and SN N (q, ω) (full circles, full squares and open triangles respectively), for the liquid Li–Mg
alloy at T = 887 K and several concentrations. The slope of the dashed lines is the calculated
adiabatic sound velocity.

From the positions of the side peaks, we obtain the associated dispersion curves, ωLiLi(q),
ωMgMg(q) and ωN N (q), which are depicted in figure 6. At qmin, the ωLiLi(q), ωMgMg(q) and
ωN N (q) virtually coincide, which means that for q � qmin the Li and Mg particles oscillate
at the same frequency. However, for greater qs we observe that for xMg = 0.50 and 0.70, the
dispersion curve splits into two branches exposing two non-hydrodynamic (kinetic) modes,
known as fast and slow sound modes, which signal the onset of a dynamic decoupling between
the Li and Mg particles. The fast mode, which involves Li particles only, has a phase velocity,
cfast ≈ 4600±200 m s−1, which is roughly the same at the two concentrations; in fact this result
agrees with the predictions of the RET [8, 9], which states that the phase velocity of the fast
mode should be very close to the adiabatic sound velocity of the corresponding light particle
fluid, namely a pure Li system obtained by removing all the Mg particles. The previous results
clearly show that when q diminishes towards qh, the fast sound mode undergoes a continuous
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transition into the hydrodynamic sound mode and the merging occurs at 0.2 � q � 0.3 Å−1.
Moreover, the RET predicts that when the concentration of the light component is increased
the fast mode will fade away, being overcome by the (extended) sound mode; this is precisely
what we observe at xMg = 0.30, where the dispersion curve ωLiLi(q) is rather close to the
(extended) hydrodynamic sound mode.

Neither side peaks nor shoulders are observed in SCC (q, ω) at any q value. This is
explained by the dominance of the diffusive contributions in the Fi j (q, t); however, the
concentration modes may be exposed by the associated partial longitudinal current correlation
function CL

CC (q, ω). In general, further information about longitudinal collective modes is
provided by the partial longitudinal current correlation functions, CL

i j (q, ω) ≡ ω2 SL
i j(q, ω),

which have been evaluated according to equation (16), and are plotted in figures 7 and 8 for
two q values.

For any q value, CL
LiLi(q, ω), CL

MgMg(q, ω), CL
N N (q, ω) and CL

CC (q, ω) exhibit at least
one peak. In restricted q regions an additional second peak appears in all the partials except
CL

MgMg(q, ω), and in somewhat larger q regions the peaks become shoulders. For instance, at
qmin (figure 7) we find for all concentrations two characteristic frequencies. At the low one,
CL

LiLi(q, ω), CL
MgMg(q, ω) and CL

N N (q, ω) show a peak, and CL
CC(q, ω) a shoulder, located at the

same position as the Brillouin peaks of the dynamic structure factors. Moreover, CL
LiMg(q, ω)

also displays a peak at the same frequency. This corroborates the quasi-hydrodynamic
behaviour of the Mg particles and some of the Li ones for these small q values. At the
high characteristic frequency, CL

LiLi(q, ω) and CL
N N (q, ω) show a shoulder for xMg = 0.30 and

a peak for the other concentrations, whereas CL
CC (q, ω) displays a peak for all concentrations.

Moreover CL
LiMg(q, ω) has a minimum at this same frequency. This suggests that some Li

particles are completely decoupled from the Mg ones, and move in opposite phase, indicating
an optical character of this mode. At larger q values (figure 8) the system is of course not
quasi-hydrodynamic any more, but still two characteristic frequencies appear. At the lower
one a peak appears for the MgMg and N N partials, and at the higher frequency one finds a
peak in the LiLi and CC partials, a shoulder in the N N partial and a minimum in the LiMg
partial, indicating again the optical character of this high frequency mode.

From the positions of the previous peaks, the longitudinal dispersion relations, ωL
LiLi(q),

ωL
MgMg(q), ω

L
N N (q) and ωL

CC (q) are obtained (figure 9). The values of ωL
MgMg(q) are always

smaller than those ofωL
LiLi(q), because of the greater atomic mass of Mg. For all concentrations,

ωL
MgMg(q) has one branch only, whereas ωL

LiLi(q) and ωL
N N (q) exhibit for xMg = 0.50 and 0.70

two branches, with the low frequency branch having a limited extent which includes the
hydrodynamic region. This is because at these two concentrations, (figures 7 and 8) when
q decreases (i.e. going into the hydrodynamic regime), the CL

LiLi(q, ω) (and CL
N N (q, ω) too)

develop two peaks, with the low frequency one situated close to that of CL
MgMg(q, ω), and the

high frequency peak being at frequencies similar to those of the pure Li system, although it
vanishes as q diminishes towards the hydrodynamic region. This behaviour suggests that in the
binary alloy the heavy Mg particles always keep their characteristic low frequencies whereas
the lighter Li particles have a much higher frequency which is mostly kept when approaching
the hydrodynamic regime, although as q decreases some Li particles start ‘catching’ the low
frequency of the heavy Mg particles. Obviously, in the hydrodynamic (q → 0) limit, all the
particles must oscillate with the same frequency and therefore the CL

LiLi(q, ω) (and CL
N N (q, ω))

will only show the low frequency peak; the high frequency one vanishes.
As shown in figure 9, at low q values the ωL

MgMg(q) has an initial linear increase up to a

maximum followed by a minimum located at q ≈ 2.50 Å−1 which coincides with the position
of the main peak of SMgMg(q). Similar behaviour is exhibited by the high frequency branch
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Figure 7. Partial longitudinal current correlation functions, CL
i j (q, ω), at q = 0.23 Å−1, for the

liquid Li–Mg alloy at T = 887 K and three concentrations. The full, dashed, dot–dashed, open
circles, stars and dotted curves represent CL

LiLi(q, ω), CL
MgMg(q, ω), CL

LiMg(q, ω), CL
N N (q, ω),

CL
NC (q, ω) and 5 × CL

CC (q, ω) respectively.

of ωL
LiLi(q), with a maximum and minimum at ≈1.5 Å−1 and 2.3 Å−1 respectively, which

coincide with the first minimum and maximum of SLiLi(q); moreover, as xMg is increased the
structure of ωL

LiLi(q) becomes less marked as a consequence of a similar trend in the maxima
and minima of SLiLi(q).

Depending on the concentration, the dispersion curves of both ωL
N N (q) and ωL

CC (q) have
either one or two branches. As for the ωL

N N (q) curve, we note that it always has a branch
associated with the majority component in the alloy and for xMg = 0.50 and 0.70, a second
branch appears. At both concentrations, the high frequency branch has a limited range and we
observe that at small qs, the high frequency branch is induced by the Li particles only, whereas
the low frequency branch comes from both the Li and Mg particles.
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Figure 8. The same as the previous figure, but for q = 2.4 Å−1.

Either one or two branches are exhibited by theωL
CC(q) dispersion curve, as the CL

CC (q, ω),
which is substantially smaller than the other partial currents, shows either one or two peaks
which may be connected with propagating concentration modes. At low qs, including the
hydrodynamic regime and for all concentrations, the CL

CC (q, ω) shows only one peak at a
frequency higher than that of the CL

N N (q, ω) (figure 7). For qs well outside the hydrodynamic
region, at xMg = 0.30 and 0.50, two maxima are clearly visible in CL

CC(q, ω), one at a frequency
close to the high frequency branch of CL

LiLi(q, ω) and another at a frequency close to that of
CL

MgMg(q, ω), although this latter maximum becomes a shoulder at xMg = 0.70.
Summing up, the high frequency branch of ωL

CC (q) exists for all concentrations, closely
follows the high frequency ωL

LiLi(q) and goes towards a finite value when q → 0, which is a
typical trend of the kinetic modes. On the other hand, the low frequency branch of ωL

CC (q)
exists for xMg = 0.30 and 0.50 only; it starts outside the hydrodynamic regime, closely follows
ωL

MgMg(q) and exists within a limited q range. In fact, we observe that as the xMg is increased,
the gap between the ωL

LiLi(q) and ωL
MgMg(q) is somewhat decreased and this is the ultimate
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Figure 9. The longitudinal dispersion relation of the partials, ωL
LiLi(q) (open and full squares),

ωL
MgMg(q) (open circles), number–number, ωL

N N (q) (open and full triangles) and concentration–

concentration, ωL
CC (q) (plus signs) longitudinal modes, for the Li–Mg liquid alloy at T = 887 K

and several concentrations.

reason for the disappearance of the low frequency branch of ωL
CC (q). Finally, it is worth

stressing that, notwithstanding whether one or two ωL
CC (q) branches appear, there is always

one branch associated with the minority component.

3.2.3. Transverse currents. The partial transverse current correlation functions, CT
i j(q, ω),

inform us about the existence of shear modes in the system. These modes are not connected with
any measurable magnitude and can only be analysed within a theoretical model or by resorting
to MD simulations. Among the scant studies on transverse currents in liquids, most have
addressed one-component systems where CT(q, ω) evolves from a Gaussian (when q → ∞)
towards a Lorentzian curve (when q → 0). Both limiting cases preclude the possibility of
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Figure 10. The transverse dispersion relation of the partials, ωT
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MgMg(q) (open circles), number–number, ωT

N N (q) (open and full triangles) and concentration–
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three concentrations.

propagation of the transverse modes, but at intermediate qs, the CT(q, ω) exhibits a peak which
is connected with propagating shear waves.

The first CMD simulations of transverse current correlations in binary systems were
performed on molten salts [48], where it was found that CT

N N (q, ω) behaves similarly to
CT(q, ω), showing a peak at intermediate q values. Likewise, the charge–charge transverse
current correlation functions showed a peak at both low and intermediate qs which was related
to the existence of transverse optic modes which take a finite value in the hydrodynamic limit.
Subsequent CMD studies in binary Lennard-Jones [10] systems have found optic-like modes
associated with CT

CC (q, ω). Similar results have also been obtained in the CMD studies by
Anento and Padró [32] for the liquid Li–Mg, Li–Na and Li4Pb alloys.

We have calculated the partial transverse currents, CT
i j(q, ω), and from their respective peak

positions, the corresponding transverse dispersion relations, ωT
i j (q), are obtained (figure 10).
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ωT
MgMg(q) has one branch whereas both ωT

LiLi(q) and ωT
N N (q) evolve from one to two branches

as xMg increases; this is the same trend as was already observed in the longitudinal dispersion
relation. Moreover, the peak in CT

MgMg(q, ω) and the low frequency peak in the CT
LiLi(q, ω)

coincide with a maximum in the CT
LiMg(q, ω) which points to in-phase motion of some Li ions

with the Mg ions.
The low frequency branch,ωT

N N (q), shows typical features of the one-component system,
namely it starts at a qc, exhibits a linear behaviour for low q values and goes to zero as q → qc.
The slope in the linear region assumingωT

N N (q) ∼ cT(q −qc) yields an estimate of the velocity
of propagation of the shear modes in the alloy: cT ≈ 2900 and 2600 m s−1 for xMg = 0.30
and 0.70 respectively. For the pure components we have obtained cT ≈ 3700 m s−1 for pure
Li at T = 590 K and cT ≈ 2600 m s−1 for pure Mg at melting (T = 953 K). Also, in this
linear region the low frequency branch ωT

N N (q) remains close to both ωT
MgMg(q) and the low

frequency branch ωT
LiLi(q), which implies that the propagation of shear modes involves both

species.
The CMD calculations of Anento and Padró [32] for the liquid Li–Mg alloy yielded

transverse dispersion relations for xMg = 0.30 which virtually coincided with the present
results; however, they did not expose the high frequencyωT

N N (q) branches at xMg = 0.50, 0.70
or the low frequency ωT

LiLi(q) branch at xMg = 0.70.
The small values taken by the CT

NC (q, ω) suggest weak couplings between density and
concentration modes. The small magnitude of the CT

CC (q, ω), particularly at small qs, also
underlines a weak contribution to the collective transverse dynamics. However, for the three
concentrations we observe clear peaks in the CT

CC (q, ω)which already exist at qmin, leading to
an ωT

CC (q) branch which takes a finite value as q → 0. The peaks in CT
CC (q, ω) are a result of

both the peak in the CT
LiLi(q, ω) and a minimum in CT

LiMg(q, ω)which is related to out-of-phase
motion of particles of different species. Similar behaviour in molten salts has been associated
with transverse optic modes of kinetic character [10, 48].

The alloy shear viscosity may be computed from the previous results by using
the total transverse current correlation function CT

tt (q, t) = 〈 j T
t (q, t) j T∗

t (q, 0)〉 where
j T
t (q, t) = x1/2

1 m1 j T
1 (q, t) + x1/2

2 m2 j T
2 (q, t) is the total transverse current, and the j T

i (q, t)
are defined according to equation (15). In the hydrodynamic limit [49], CT

tt (q → 0, t) =
(m̄/β) exp{−q2η | t | /m̄ρ}, where m̄ = x1m1 + x2m2 and η is the alloy shear viscosity. In
terms of its memory function representation

C̃T
tt (q, z) = 1

βm̄

[
z +

q2

ρm
η̃(q, z)

]−1

, (17)

where the tilde denotes the Laplace transform, a generalized alloy shear viscosity coefficient,
η̃(q, z), is introduced. The area under the normalized CT

tt (q, t) gives βm̄C̃T
tt (q, z = 0), from

which values for η̃(q, z = 0) are derived and, when extrapolated to q = 0, give the alloy shear
viscosity η. The calculated values for η are shown in table 4, although no experimental data
are as yet available for the alloy shear viscosities. However, we mention that the OF-AIMD
calculations for both pure Li and Mg at thermodynamic conditions near their corresponding
triple points gaveηLi = 0.61±0.05 andηMg = 1.16±0.1 whereas their respective experimental
values are (in GPa ps) ηexp

Li = 0.57 ± 0.10 [43] whereas ηexp
Mg = 1.25 ± 0.15 [44]. For simple

liquid alloys, η shows either a linear or a small negative deviation from the linear law, whereas
positive deviations are usually exhibited by those alloys with heterocoordination tendencies.
The calculated results show a virtually linear behaviour, which sounds plausible on account of
the mild heterocoordination tendencies found for this alloy.
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Table 4. Calculated values of the shear viscosity η (in GPa ps) for the Li–Mg liquid alloy at
T = 887 K.

xMg ηTh

0.30 0.50 ± 0.05
0.50 0.75 ± 0.05
0.70 1.07 ± 0.08

Table 5. Input data for the Li–Ba alloys studied in this work, along with some simulation details.
ρ is the total ionic number density taken from [21, 51].

x = xBa ρ (Å−3) T (K) N Cutoff (Ryd)

0.12 0.036 3889 575 1200 12.75
0.30 0.027 877 575 600 17.50
0.59 0.020 518 775 600 14.25

4. Results: the Li–Ba system

Experimental work performed on the Li1−x Bax alloy is rather scarce. Even its phase diagram
is not yet fully settled as two rather different phase diagrams have been proposed [50, 51].
Whereas one gives a eutectic composition at xBa = 0.10 and an intermetallic compound
Li4Ba, the other phase diagram locates the eutectic composition at xBa = 0.20 and reports two
intermetallic compounds LiBa2 and LiBa6. Ruppersberg and co-workers [51] have measured
the density, compressibility, heat capacity and surface tension of the liquid Li–Ba alloy at
several concentrations and temperatures; moreover, NS experiments were performed [21] for
xBa = 0.12, 0.30 and T = 575 K (the latter corresponding to the ‘zero-alloy’ composition)
and xBa = 0.59 and T = 775 K. The total static structure factors, ST(q), showed a marked
composition dependence and the data for SCC (q → 0) suggested weak homocoordination
(heterocoordination) tendencies for xBa = 0.12 and 0.30 (xBa = 0.59).

A similar scarcity of results is found on the theoretical side, as we are aware of just
two calculations. First, we mention a structural study [21] performed using the hard sphere
(HS) model within the Percus–Yevick analytical solution for HS binary mixtures. The results
obtained for the ST(q) showed a qualitative agreement with experiment although the amplitude
of the oscillations was grossly overestimated and significant discrepancies appear when q → 0.
Subsequently, a more elaborate approach was taken by González et al [52] who studied the
static structure of liquid Li0.88Ba0.12 alloy by using effective interatomic pair potentials derived
within the neutral pseudoatom model (NPA) [53] and the modified hypernetted chain (MHNC)
theory [54] to obtain the liquid static structure. Their calculated ST(q) substantially improved
on the previous HS-based calculations, but no further magnitudes were evaluated.

This work presents an AIMD study of the liquid Li1−x Bax alloy at the same thermodynamic
states for which the NS experiments [21] were performed. Table 5 provides information about
the thermodynamicstates considered in this study along with other technical simulation details.
First, we note that an OF-AIMD calculation for pure liquid Ba at thermodynamic conditions
near its triple point provided a fair description of several static and dynamic properties,although
the results were not so accurate as those already attained for liquid Li and Mg. Figure 1 shows
the OF-AIMD static structure factor obtained for liquid Ba which qualitatively agrees with
the experimental data [36], but overestimates the height of the main peak and shows some
dephasing in the oscillations. Further results concerning some dynamical magnitudes are
reported in the ensuing subsections.
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Figure 11. Total static structure factors, ST(q), for the liquid Li–Ba alloy at xBa = 0.12, 0.30 and
T = 575 K and xBa = 0.59 and T = 775 K. Open circles are the OF-AIMD results for ST(q)
whereas the broken line shows the experimental neutron diffraction data of Ruppersberg [21].

4.1. Structural properties

We have calculated the partial pair distribution functions, gi j(r) and the associated AL partial
structure factors Si j(q), although comparison with the experimental data can only be performed
at the level of the ST(q). As shown in figure 11, the calculated OF-AIMD ST(q) qualitatively
reproduce the main features of the experiment [21], although there is some underestimation for
the amplitude of the oscillations and when q → 0 some discrepancies appear for xBa = 0.12
and 0.30.

To analyse the short range order in the alloy, we have used the local mole fractions
method [40] which was already described in the previous section. This is more appropriate
for those systems with a large atomic size mismatch between the two components [11] and
we have taken all the Ri j in equation (8) as the position of the first minimum of gBaBa(r).
Table 6 shows the calculated values for xs − 1 which, for xBa = 0.12 and 0.30, are small
and positive numbers indicating a mild homocoordination tendency, whereas a negative value
is obtained at xBa = 0.59 which now suggests a heterocoordination tendency. In all cases,
the previous tendencies agree with the experimental data [21]. It is worth noting that the
corresponding Warren–Cowley [38] SRO parameters also take positive values at xBa = 0.12
and 0.30, which signals an homocoordination tendency, whereas for xBa = 0.59 the two
parameters take opposite signs leading to inconclusive results.

4.2. Dynamic properties

4.2.1. Single-particle dynamics. The results obtained for the self-VCFs and relative VCFs
of the Li1−x Bax liquid alloy are shown in figure 12. Now the Z s

Ba(t) has the slower decay and
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Figure 12. Normalized self-VACFs and relative VACFs for the liquid Li0.88Ba0.12 alloy at T = 575
and Li0.41Ba0.59 alloy at T = 775. The dotted, full and dashed curves represent ZLiBa(t), Z s
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Ba(t) respectively.

Table 6. Calculated values of the Warren–Cowley SRO parameters, α(i)1 , for the Li–Ba liquid
alloy at the thermodynamic states considered in this work.

xBa α
(Li)
1 α

(Ba)
1 xs − 1

0.12 0.05 0.0 0.003
0.30 0.014 0.0 0.005
0.59 −0.12 0.15 −0.01

smaller backscattering, although when the concentration of the heavy particles is increased,
the backscattering effect increases and both self-diffusion coefficients decrease. The ZLiBa(t)
stands between the two self-VCFs, and the very small positive values of γLiBa at xBa = 0.12
and 0.30 again lead to prediction of a rather mild homocoordination behaviour whereas the
negative γLiBa at xBa = 0.59 indicates heterocoordination tendencies.

No experimental data are available for the diffusion coefficients in the liquid Li1−x Bax

alloy; even that of pure Ba has not yet been measured. The OF-AIMD calculations for pure
liquid Ba near the triple point produced a value D0

Ba = 0.19 ± 0.02 (in units of 10−4 cm2 s−1),
which is comparable to other calculated values [55]. Table 3 includes also the results for
SCC (q → 0)·Dint , which are similar to those obtained from Darken’s semiempirical expression.

4.2.2. Collective dynamics. The calculated AL partial intermediate scattering functions,
Fi j (q, t), show a behaviour similar to that for the Li–Mg alloy, with the diffusive contributions
playing a dominant role at low qs. Therefore, the investigation of possible propagating
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Table 7. Diffusion coefficients (in 10−4 cm2 s−1) for the Li–Ba liquid alloy at T = 575 K
(xBa = 0.12, 0.30) and 775 K (xBa = 0.59).

xBa 0.12 0.30 0.59

Ds
Li 0.78 0.48 0.54

Ds
Ba 0.39 0.22 0.24

DLiBa 0.47 0.30 0.39

D0
LiBa 0.44 0.30 0.42

Dd
LiBa 0.28 0 −0.12

γLiBa 0.07 0 −0.30
SCC (0)Dint 0.054 0.062 0.111

SCC (0)D
(Darken)
int 0.047 0.063 0.093

longitudinal modes is better performed in terms of the associated partial dynamic structure
factors. Figure 13 shows the SLiLi(q, ω), SBaBa(q, ω) and SN N (q, ω) calculated at the lowest
wavevector allowed by the simulation, i.e. qmin = 0.19, 0.22 and 0.20 Å−1 for xBa = 0.12, 0.30
and 0.59 respectively. We stress that at these lowest wavevectors, the hydrodynamic region has
not yet been reached. Whereas at xBa = 0.30 and 0.59 the small difference between the peak
positions of the corresponding Si j(q, ω) suggest that qmin must be close to qh, for xBa = 0.12
there is still an appreciable mismatch between the peak positions of SLiLi(q, ω) and SBaBa(q, ω)
(located at ≈5.1 and 3.7 ps−1 respectively). Therefore, the previous results show that the
transition towards the hydrodynamic regime takes place at smaller q values than in the Li–Mg
alloy and consequently the hydrodynamic regime comprises a smaller range of wavevectors.
From the position of the side peaks in SN N (q, ω), we have estimated the adiabatic sound
velocity in the alloy, i.e. cs = 2500 m s−1 (for xBa = 0.12), cs = 2000 m s−1 (xBa = 0.30)
and cs = 1700 m s−1 (xBa = 0.59) which compare well with the experimental [51] values of
2550, 1900 and 1500 m s−1 respectively.

The dispersion relations, as derived from the peak positions, are shown in figure 14. At
the three concentrations, we observe a splitting into fast and slow kinetic modes. Note that
the difference in slope between the two modes is substantially greater than that for the Li–Mg
alloy, because of the greater mass difference (and, therefore, oscillation frequency difference)
of the Li and Ba ions. Moreover, the hydrodynamic regime is now attained at a smaller q as it
becomes harder for the lighter Li ions to oscillate with the same frequency as the much heavier
Ba ions because of the increased difference between their natural oscillation frequencies. It is
also observed that the fast sound mode still appears at the smallest concentration of the heavy
Ba particles considered, namely xBa = 0.12, which complies with the RET prediction that the
increase of the mass ratio and/or the decrease of the number density widens the concentration
range for the existence of both modes.

In order to uncover additional longitudinal modes, we have again computed the partial
longitudinal current correlation functions, and the positions of their respective peaks give rise
to the corresponding longitudinal dispersion relations which are plotted in figure 15. These
dispersion relations show the same basic trends as were already found for the Li–Mg liquid
alloy, namely: (i) the heavier component has one dispersion branch, ωL

BaBa(q), which hardly
changes with concentration; (ii) both the lighter component, ωL

LiLi(q), and ωL
N N (q) evolve

from one to two branches as the concentration of the heavier component increases; and (iii) the
ωL

CC (q) always has a high frequency branch which takes a finite value when q → 0, as well
as a low frequency one which disappears when the concentration of the heavier component
increases.
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S
ij(

q,
 ω

)

0 5

0 5

0 5

3

3

0 0.3 0.6
ω (ps– 1)

3

xBa=0.12

xBa=0.30

xBa=0.59

0

1

2

3

4

0

1

2

3

0

1

2

3

Figure 13. Partial dynamic structure factors, Si j (q, ω), at q = 0.19 Å−1 (xBa = 0.12, T = 575 K),
q = 0.23 Å−1 (xBa = 0.30, T = 575 K) and q = 0.20 Å−1 (xBa = 0.59, T = 775 K), for the
liquid Li–Ba alloy. The full, dashed and circles curves represent SLiLi(q, ω), SBaBa(q, ω) and
SN N (q, ω) respectively. The inset shows 103 Si j (q, ω).

The transverse currents, CT
i j(q, ω), have been calculated and the associated transverse

dispersion relations, ωT
i j (q), are plotted in figure 16. ωT

BaBa(q) always has one branch whereas
both ωT

LiLi(q) and ωT
N N (q) develop a second branch as the concentration of the heavier

component increases. However, at xBa = 0.12, ωT
LiLi(q) and ωT

N N (q) have only one branch
which virtually coincides with the high frequency ωT

CC (q) and they take a finite value as
q → 0, which signals the absence of propagating shear modes. ωT

CC (q) always has one branch
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Figure 14. The dispersion relation of the collective modes in the partials, SLiLi(q, ω), SBaBa(q, ω)
and SN N (q, ω) (full circles, full squares and open triangles respectively), for the liquid Li–Ba alloy
at several concentrations. The slope of the dashed lines shows the respective experimental adiabatic
sound velocities.

connected with the minority component, whereas at xBa = 0.12, 0.30 a second branch appears.
Moreover, the low frequency ωT

CC (q) branch starts well outside the linear region and this
suppression of the CC modes in the long wavelength limit is predicted by the GCM model [10]
for those systems with a high mutual diffusion and a tendency towards homocoordination. We
recall that the previous structural results suggested a mild homocoordination tendency at both
concentrations.

In fact, the basic difference from the (longitudinal and transverse) dispersion relations
of the liquid Li–Mg alloy is quantitative and stems from the greater atomic mass difference
between the Li and Ba ions. It shows up in a wider gap between the ωL,T

BaBa(q) and the high
frequency ωL,T

LiLi(q) curves as well as in the fact that the collective motions (acoustic and shear
waves) are progressively hindered with increasing atomic mass mismatch.
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Figure 15. The longitudinal dispersion relation of the partials, ωL
LiLi(q) (open squares), ωL

BaBa(q)
(open circles), number–number, ωL

N N (q) (open triangles) and concentration–concentration,
ωL

CC (q) (plus signs) longitudinal modes, for the Li–Ba liquid alloy at the three concentrations
and temperatures considered in this work.

Table 8. Calculated values of the shear viscosity η (in GPa ps) for the Li–Ba liquid alloy at
T = 575 K (xBa = 0.12, 0.30) and 775 K (xBa = 0.59).

xBa ηTh

0.12 0.60 ± 0.05
0.30 1.40 ± 0.1
0.59 1.65 ± 0.1

From the total transverse current correlation function and using the formalism outlined in
section 3.2, we have calculated the alloy shear viscosity, η, whose values are shown in table 8.
No experimental data are available for the alloy shear viscosities, but the calculated OF-AIMD
value for pure Ba near the triple point is ηBa = 2.2 ± 0.2 whereas its reported experimental
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Figure 16. The transverse dispersion relation of the partials, ωT
LiLi(q) (open and full squares),

ωT
BaBa(q) (open circles), number–number, ωT

N N (q) (open and full triangles) and concentration–
concentration,ωT

CC (q) (plus signs) transverse modes, for the Li–Ba liquid alloy at the concentrations
and temperatures considered in this work.

value is (in GPa ps) ηexp
Ba = 1.82 [56]. Using the calculated OF-AIMD value for pure Li at

575 K, namely ηLi = 0.42 ± 0.05, the present results for the alloy suggest some negative
deviation from the linear law at xBa = 0.12, which conforms with the mild homocoordination
tendencies exhibited at this concentration [21].

5. Conclusions

We have calculated several static and dynamic properties of the liquid Li–Mg and Li–Ba alloys
at different concentrations. The simulations have been performed using the orbital free ab initio
molecular dynamics method combined with local pseudopotentials derived within the same
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framework. Former calculations on pure liquid Li, Mg and Ba at their respective triple points
yielded a good description of several static and dynamic properties which has prompted its
application to the study of the static and dynamic properties of their binary alloys.

The results obtained for the static structural properties, as embodied by the ST(q), provide
a reasonable description of the available experimental data. The discrepancies observed in the
Li–Ba alloy may be traced back to the local pseudopotential used for Ba; in fact we already
noted that the description of pure liquid Ba was less accurate than those of pure liquid Li and
Mg.

As for the dynamical properties, we have analysed several time correlation functions
although comparison with experiment could only be made at the level of some transport
coefficients. But even in this case, experimental data were normally available for the pure
components and, therefore, the reliability of the results obtained for the alloys had to be
substantiated in a qualitative way by connection with the known ordering tendencies in the
alloy. In fact, experimental data were available only for the adiabatic velocity of sound in the
liquid Li–Ba alloy and they were accurately reproduced by the present calculations.

For both alloys, the calculated partial dynamic structure factors, SLiLi(q, ω), SMgMg(q, ω)
and SBaBa(q, ω), show clear side peaks which extend far beyond the hydrodynamic regime and
represent two non-hydrodynamicmodes known as the fast and slow sound modes, respectively.
This phenomenon had already been predicted by the RET when applied to a binary mixture
of hard spheres [8]. At that time, it was also concluded that a mass ratio larger than 10 would
be required in order to expose the non-hydrodynamic modes. But the present calculations,
along with previous ones on the liquid Li–Na alloy [11], have shown that those modes may
also appear in systems with a significantly smaller mass ratio, ≈3. Furthermore, we obtain
that as the wavevector q is decreased towards the hydrodynamic region, the fast sound mode
smoothly merges into the hydrodynamic sound mode and this process takes place over a range
of q values which becomes smaller as the mass ratio increases. In this way, whereas for the
Li–Mg alloy it occurs at around 0.2 Å−1 � q � 0.4 Å−1, for the Li–Ba alloy the range moves
towards smaller values, which in the Li0.88Ba0.12 alloy happens at q � 0.2 Å−1.

An interesting feature is the appearance of two branches forωL,T
N N (q),ω

L,T
AA (q) (A = lighter

element) andωT
CC (q), in both the longitudinal and transverse dispersion relations, with the high

frequency branches representing kinetic modes which are overdamped.
The low frequency ωL

N N (q) and ωL
AA(q), along with the ωL

HH(q), (H = heavier element)
go linearly to zero at q = 0 and they represent acoustic modes. On the other hand, the low
frequency ωT

N N (q) and ωT
AA(q), along with the ωT

HH(q), go linearly to zero at a finite q value,
qc, and they represent propagating shear modes. However, the low frequency ωT

CC (q) branch
does not exist for low q values, as it appears just outside the linear region; this behaviour
is consistent with the predictions of the GCM model. Moreover, we find that by increasing
the concentration of the lighter component, the range of the low frequency ωT

N N (q) branch is
diminished.

The shear viscosity of the alloy has been evaluated by means of its connection with
the hydrodynamic limit of the total transverse current correlation function. The reasonable
agreement with experiment of the calculated shear viscosity coefficients for the pure
components provides confidence in the results obtained for the alloys. Moreover, its variation
with concentration qualitatively correlates with the known ordering tendencies of both alloys.

We end up by signalling that the two main approximations in the present orbital free ab
initio molecular dynamics method are the electronic kinetic energy functional and the local
pseudopotentials describing the electron–ion interactions. Therefore, further improvements
of the method will necessarily focus on developing more accurate kinetic energy functionals
and local ionic pseudopotentials.
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[12] González D J, González L E, López J M and Stott M J 2003 Europhys. Lett. 62 42
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[24] González D J, González L E, López J M and Stott M J 2002 Phys. Rev. B 65 184201
[25] Beauchamp P, Taylor R and Vitek V 1975 J. Phys. F: Met. Phys. 5 2017
[26] Dagens L, Rasolt M and Taylor R 1975 Phys. Rev. B 11 2726
[27] Hafner J 1976 J. Phys. F: Met. Phys. 6 1243
[28] Hafner J 1977 Phys. Rev. A 16 351
[29] Harrison W A 1966 Pseudopotentials in the Theory of Metals (New York: Benjamin)
[30] Canales M, Gonzalez D J, Gonzalez L E and Padro J A 1998 Phys. Rev. E 58 4747
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